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Abstract

A quantitative structure–property relationship study based on multiple linear regression (MLR) and artificial neural
network (ANN) techniques was carried out to investigate the retention behavior of some terpenes on the polar stationary
phase (Carbowax 20 M). A collection of 53 noncyclic and monocyclic terpenes was chosen as data set that was randomly
divided into two groups, a training set and a prediction set consist of 41 and 12 molecules, respectively. A total of six
descriptors appearing in the MLR model consist of one electronic, two geometric, two topological and one physicochemical
descriptors. Except for the geometric parameters the remaining descriptors have a pronounced effect on the retention
behavior of the terpenes. A 6-5-1 ANN was generated by using the six descriptors appearing in the MLR model as inputs.

´The mean of relative errors between the ANN calculated and the experimental values of the Kovats retention indexs for the
prediction set was 1.88%. This is in aggreement with the relative error obtained by experiment.  2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction often cannot be made on the basis of MS data only.
This is due to the fact that many terpenes have

Terpenes are natural products that exist in many essentially similar structures, and after ionization,
family of plants. Currently, many researchers are fragmentation and rearrangement in the ion source
interested in the chemistry of terpenes. The sepa- produce similar patterns [1]. Hence, some knowledge
ration and identification of terpenes in plant essential of retention characteristics is required to complement
oils and other natural and synthetic sources rely mass spectral data.

´heavily on gas chromatography (GC). In some cases A Kovats retention index reports the retention
GC may be the sole means of identification based on behavior of a compound relative to a standard set of
direct comparison of retention times with standards hydrocarbons, utilizing a logarithmic scale. The

´or precise knowledge of the Kovats retention indices retention index of compound A, I , is defined as:A

(I values). Even when combined GC–mass spec-
9 9log t 2 log tR(A) R(N )troscopy (MS) is used for the analysis, assignments ]]]]]]I 5 100N 1 100 ?A 9 9log t 2 log tR(N11) R(N )
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retention times of n-alkanes of carbon number n11 QSPR study using ANNs for the prediction of
´and n, that are respectively larger and smaller than Kovats retention indices of some terpenes.

the adjusted retention time of the unknown [2].
Retention is a phenomenon that is primarily depen-
dent on the interactions between the solute and the 2. Experimental
stationary phase molecules. The forces associated
with these interactions can be related to the geomet- 2.1. Data set
ric and topological structures and electronic environ-

´ments of the molecule. Quantitative structure–prop- The data set of the Kovats retention indices was
erty relationships (QSPRs) have been demonstrated taken from the values reported by Davies [26]. A
to be a powerful tool for the investigation of the collection of 53 noncyclic and monocyclic terpenes
chromatographic parameters. QSPRs have been used was chosen (Table 1). Temperature has quite marked
to obtain simple models to explain and predict the effects on the GC retention indices [3]. Therefore,
chromatographic behavior of various classes of the observed I values that are taken from Ref. [26]
compounds [3]. Mekenyan et al. have derived a are obtained under similar conditions and at 1508C.
linear quantitative retention–structure model in GC The I values of all compounds included in the data
for 41 alkylbenzenes [4]. Dimov and Osman have set were obtained on a capillary column with the

´used QSPRs to relate the chromatographic retention polar Carbowax 20 M stationary phase. Their Kovats
of 38 isoalkanes to their molecular structural features I values are in the range 1422–1919 for tetrahydro-
[5]. Welsh et al. have studied the chromatographic linalyl acetate and myrcene-8-ol, respectively. The
data for 31 unsubstituted 3–6 ring polycyclic aro- data set was randomly divided into two groups, a
matic hydrocarbons using QSPR methods [6]. Re- training set and a prediction set containing 41 and 12
cently, Katritzky et al. have used QSPR techniques compounds, respectively. The training and the pre-
for correlation and prediction of GC retention index- diction sets were used for the model generation and
es of methyl-branched hydrocarbons produced by evaluation of the model, respectively.
insects [7]. Some other works in this area are listed
in Refs. [8–15]. 2.2. Descriptor generation

Artificial neural networks (ANNs) have been
applied to a wide variety of chemical problems such Retention in GC is the result of competitive
as simulation of mass spectra [16], prediction of solubility of the solute between the mobile and the
carbon-13 NMR chemical shift [17], modeling of ion stationary phases. The molecular structure and
interaction chromatography [18,19], response surface chemical properties of the solute determine the type
modeling in HPLC optimization [20] and quantita- and the extent of the interaction of the solute with
tive structure–activity relationship (QSAR) studies these phases. The differences between these prop-
[21–23]. Also the flame ionization detector and erties govern the retention behavior through the
thermal conductivity detector response factors for a column. Due to the diversity of the molecules
diverse set of organic molecules were predicted studied in this work, 35 different descriptors are
using ANN models developed in our laboratory chosen and listed in Table 2. These parameters
[24,25]. encode different aspects of the molecular structure,

In the present study an ANN was employed to and consist of eight electronic (1–8), nine geometric
generate a QSPR model between the molecular based (9–17), 17 topological (18–34) and one physico-
structural parameters (descriptors) and observed re- chemical (35) descriptors. Geometric descriptors
tention indexes of some noncyclic and monocyclic were calculated using optimized Cartesian coordinate
terpenes on the polar stationary phase (Carbowax 20 and van der Waals radius of each atom in the
M). molecule [27,28]. Electronic descriptors were calcu-

Then the generated ANN was evaluated and lated using the MOPAC program (Version 6) [29].
applied for the prediction of I values of some Topological descriptors were calculated using two-
terpenes. As far as we are aware, this is the first dimensional representation of the molecules. Some
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Table 2
List of descriptors employed in this work

Table 1
Number NameThe data set and corresponding observed and ANN predicted

values of the retention indexes 1 Electron density on the most positive atom
2 Electron density on the most negative atomNumber Name I I E %obs ANN rel
3 Highest occupied molecular orbital

Training set 4 Lowest unoccupied molecular orbital
1 Citronellyl formate 1638 1627 20.67

5 Total dipole moment2 1,2-Dihydrolinalool 1537 1521 21.04
6 Highest molecular moment of inertia3 Geranyl formate 1717 1702 20.87
7 Lowest molecular moment of inertia4 Terpinene-4-yl acetate 1640 1627 20.79
8 Molecular polarizability5 Myrcene-8-ol 1919 1896 21.20

6 Neoisocarvonmenthyl acetate 1672 1664 20.48 9 Shape factor
7 Neryl butyrate 1868 1825 22.30 10 Molecular volume
8 Isopulegyl acetate 1608 1643 2.17 11 Molecular surface area
9 Linalyl butyrate 1698 1676 21.30 12 Molecular shadow area in the z–y plane

10 Carveyl acetate 1795 1810 0.84 13 Molecular shadow area in the x–y plane
11 Citronellyl isobutyrate 1739 1739 0.00

14 Molecular shadow area in the x–z plane12 Neryl formate 1700 1718 1.06
15 Molecular standard shadow area in the z–y plane13 Geranyl isobutyrate 1821 1821 0.00
16 Molecular standard shadow area in the x–y plane14 6,10-Dihydromyrcenol 1473 1501 1.90
17 Molecular standard shadow area in the x–z plane15 Isomenthyl acetate 1599 1655 3.50

16 Linalyl acetate 1569 1606 2.36 18 Zero order connectivity index
17 Dihydrocarvyl acetate 1700 1722 1.29 19 Path one connectivity index
18 Myrcenol 1631 1678 2.88 20 Path two connectivity index
19 Neryl acetate 1735 1767 1.85 21 Path three connectivity index
20 Carvomenthyl acetate 1641 1670 1.76 22 Path four connectivity index
21 Dihydronerol 1725 1780 3.18

23 Cluster three connectivity index22 Linalool 1555 1565 0.64
24 Cluster four connectivity index23 Neoisomenthyl acetate 1623 1651 1.72
25 Second order kappa index24 cis-Ocimenol 1660 1708 2.90
26 Number of atoms in each molecule25 Tetrahydrolinalyl acetate 1422 1457 2.46

26 Citronellol 1765 1767 0.11 27 Molecular mass
27 Citronellyl acetate 1671 1672 0.05 28 Balaban index
28 cis-b-Terpinyl acetate 1622 1682 3.69 29 Number of double bonds in a molecule
29 Tetrahydrogeranyl acetate 1582 1618 2.27 30 Number of oxygen atoms in a molecule
30 Perillyl acetate 1791 1789 20.12 31 Number of carbon atoms in a molecule
31 6,7-Dihydrolinalool 1449 1513 4.41

32 Number of ester groups in a molecule32 Lavandulol 1707 1687 21.17
33 Number of carbonyl groups in a molecule33 Neryl propionate 1794 1856 3.45
34 Winer number34 Nerol 1808 1838 1.66
35 Molecular density35 Citronellyl butyrate 1811 1856 2.48

36 Geranyl butyrate 1904 1939 1.84
37 Tetrahydrogeraniol 1675 1723 2.86
38 Tetrahydromyrcenol 1449 1458 0.63 of the descriptors generated for each compound
39 Terpinyl acetate 1722 1668 23.13 encoded similar information about the molecule of40 Linalyl propionate 1624 1629 0.30

interest. Therefore, it was desirable to test each41 Tetrahydrolinalool 1431 1459 1.96
descriptor and eliminate those which show high

Prediction set correlation (R.0.95) with each other. A total of 13
42 trans-Carveyl acetate 1759 1749 20.57

out of 35 descriptors showed high correlation and43 a-Citronellol 1760 1789 1.65
44 Citronellyl propionate 1738 1774 2.07 was removed from the consideration. Subsequently,
45 Geraniol 1842 1788 22.93 the method of stepwise multiple linear regression
46 Geranyl propionate 1834 1840 0.33

(MLR) was used to calculate the coefficients relating47 Lavandunyl acetate 1609 1553 23.48
48 Linalyl isobutyrate 1622 1588 22.10 ´the descriptors to the Kovats retention index.
49 Menthyl acetate 1600 1652 3.25
50 Neomenthyl acetate 1569 1599 1.91

2.3. Artificial neural network generation51 Tetrahydrolavandulol 1600 1562 22.38
52 Nerylisobutyrate 1790 1791 0.05
53 trans-Ocimenol 1685 1717 1.90 A detailed description of the theory behind a



180 M. Jalali-Heravi, M.H. Fatemi / J. Chromatogr. A 915 (2001) 177 –183

neural network has been adequately described else- in Table 1. The molecules included in the data set
where [30–32]. In addition we have reported some contain the functional groups such as alcohols, esters
relevant principles of ANNs in our previous papers and ethylenic groups. All these types of molecules
[16,23–25]. The program for the feed-forward neural are included in the prediction set. Therefore, al-
network that was trained by back-propagation though the molecules included in the prediction set
strategy was written in FORTRAN 77 in our labora- are chosen randomly they adequately represent the
tory. All of the calculations presented in this work training set.
were carried out on a Hewlett-Packard 133 MHz Table 3 shows the best MLR model obtined using
Pentium computer, model HP Vectra VL. The de- the stepwise procedure. It can be seen from this table
scriptors appearing in the MLR model were used as that six descriptors appeared in the MLR model.
inputs for generation of the ANN. Therefore the Also, the mean effect of each parameter is included
number of inputs in the ANN was six and the in this table. Among different factors affecting the
number of nodes in the output layer was set to be retention behavior of a molecule, mass and bulkiness
one. The number of nodes in the hidden layer was are very important. The descriptors of molecular
optimized. The initial weights were randomly select- mass (M ) and molecular volume (V ) represent theser

ed from a uniform distribution that ranged between properties, respectively. However, these parameters
20.3 and 10.3. The initial biases’ values were set to correlate with each other. Therefore, we have deleted
be one. These values were optimized during the these descriptors in generation of the MLR model
training of the network. The value of each input was and added a new descriptor called molecular density
divided to its mean value to bring the values of the (MD). This descriptor is defined as (M /V )?N, wherer

input variables into the dynamic range of the sigmoid N is the Avogadro number. The appearance of the
transfer function in the ANN. descriptor of the electron density on the most

Before training, the network was optimized for the positive atom (EDPA) in the model represents the
number of nodes in the hidden layer, learning rates electrostatic interaction between a terpene molecule
and momentum. In order to evaluate the performance and the polar stationary phase. The structure of many
of the ANN, standard error of calibration (SEC) and terpenes included in this study are similar to each
standard error of prediction (SEP) were used [33]. other. These structures only differ in the arrangment
Then the network was trained using the training set of one bond or one carbon atom. Therefore, appear-
by back-propagation strategy for the optimization of ing of the topological descriptors such as second

2the values of the weights and biases. order Kappa index ( K) and the path one connectivi-
1ty index ( X ) in the model is essential. Thesep

topological descriptors encode the compactness and
3. Results and discussion the degree of branching of a molecule, respectively.

On the other hand, among different geometric pa-
The data set and corresponding observed and rameters included in Table 2, two descriptors of

´ANN predicted values of the Kovats retention in- molecular shadow surface area on x2y plane (S )xy

dices of all molecules studied in this work are shown and standardized molecular shadow area on x2z

Table 3
Specification of multiple linear regression model

Descriptor Notation Coefficient Mean effect

1 Electron density on the most positive atom EDPA 2211.479 (628.241) 2563.65
22 Second order kappa index K 82.178 (613.122) 534.13

3 Molecular shadow surface area on x–y plane S 20.442 (60.031) 229.50xy

4 Standardized molecular shadow area on x–z plane SS 338.954 (622.583) 241.42xz

5 Molecular density MD 6992.076 (6880.421) 630.02
16 Path one connectivity index X 119.170 (627.714) 594.42p

Constant 5427.634 (6930.483)
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Table 4plane (SS ) appeared in the model. It is obvious thatxz aThe values of the descriptors that were used in this workthe four descriptors mentioned above can adequately
b 1 2Number EDPA MD S SS X Kdifferentiate between the retention behavior of the xy xz p

Training setterpenes with similar structures. These parameters
1 3.7518 0.9103 71.61 0.766 4.507 8.59

reveal the role of important factors such as size, 2 0.8023 0.8582 59.15 0.6728 4.334 4.79
3 3.7545 0.9283 68.48 0.7127 4.507 8.59degree of branching and steric interactions on the
4 3.6986 0.9409 61.11 0.7139 5.751 5.91

retention behavior of terpenes. The mean effects of 5 0.8010 0.8747 63.15 0.8497 4.073 6.69
6 3.6953 0.9305 62.44 0.7279 5.675 5.18the descriptors appearing in the model indicate that
7 3.6936 0.9078 79.91 0.7075 5.956 10.17

except for the geometric parameters, the electronic, 8 3.6957 0.9455 57.70 0.7426 5.405 5.19
9 3.6852 0.9111 71.50 0.7787 5.920 8.14topological and physicochemical parameters have a

10 3.6953 0.9619 65.82 0.7009 4.996 5.19
significant effect on the retention behavior of the 11 3.6980 0.8953 88.55 0.7512 5.936 9.07

12 3.7512 0.9273 65.86 0.6707 4.507 8.59terpenes. The calculated values of the six descriptors
13 3.7010 0.9090 83.72 0.6551 5.887 9.07

appearing in the best model are shown in Table 4 for 14 0.8006 0.8743 58.23 0.7296 3.515 5.63
15 3.6957 0.9297 61.62 0.6968 5.675 5.19all molecules included in the training and the predic-
16 3.6826 0.9227 69.50 0.714 4.805 6.48

tion sets. 17 3.6950 0.9456 62.54 0.7261 5.329 5.19
18 0.7991 0.8930 61.29 0.7203 3.692 5.63Next step was the generation of the artificial
19 3.6966 0.9201 72.06 0.6781 4.944 8.32

neural network. Before the training of the network, 20 3.6962 0.9303 64.69 0.7116 5.675 5.19
21 0.8021 0.8582 62.59 0.7005 4.429 6.69the parameters of the number of nodes in hidden
22 0.8021 0.8738 60.10 0.6545 3.971 4.79

layer, weights and biases learning rate and the 23 3.6944 0.9454 54.70 0.7390 4.764 4.30
24 0.7981 0.8738 60.47 0.6394 4.048 5.63momentum were optimized. The procedure for the
25 3.6842 0.8937 66.85 0.7222 5.589 6.48

optimization of these parameters is reported in our 26 0.8028 0.8568 64.89 0.7020 4.406 6.69
27 3.6980 0.9055 77.48 0.7318 5.821 8.32previous papers [16,25]. Table 5 shows the architec-
28 3.6872 0.9480 55.38 0.7420 5.324 4.68

ture and specification of the optimized ANN. After 29 3.6976 0.8906 79.57 0.7196 5.653 8.34
30 3.6843 0.9761 56.32 0.6082 4.621 5.02the optimization of ANN parameters, the network
31 0.8033 0.8563 62.06 0.7203 4.317 4.79

was trained using the training set for the optimization 32 0.8024 0.8737 59.29 0.7049 3.971 5.63
33 3.7033 0.9139 76.53 0.7152 5.504 9.24of weights and biases values. For the controlling of
34 0.8013 0.8739 59.78 0.6689 4.063 6.69

the overfitting of the network during the training 35 3.7039 0.8959 87.70 0.6572 6.348 10.17
36 3.7002 0.9086 84.04 0.5795 6.348 10.17procedure, the values of the SEC and the SEP were
37 0.8028 0.8403 67.10 0.7666 4.773 6.69

calculated and recorded for the monitoring the extent 38 0.8043 0.8410 63.72 0.7462 4.678 4.79
39 3.6902 0.9333 57.32 0.7688 5.611 4.69of learning after each 500 iterations. Fig. 1 shows the
40 3.6854 0.9163 74.51 0.7368 5.420 7.30

learning curve obtained from these data and reveals 41 0.8031 0.8415 63.61 0.7376 4.700 4.79

that after 96 000 iterations the values of SEP started
Prediction setto increase and overfitting was began. Therefore,
42 3.6954 0.9619 65.82 0.7018 4.996 5.20

training of the network was stopped at this point. 43 0.8029 0.8555 64.98 0.7667 4.417 6.69
44 3.7055 0.8999 81.87 0.7595 5.848 9.24From the high value of iterations two points may
45 0.8063 0.8743 62.77 0.7857 4.063 6.69

arise. First, the architecture of the generated ANN 46 3.7007 0.9142 79.79 0.6291 5.353 9.24
47 3.6986 0.9205 71.28 0.7418 4.852 7.33was correctly designed and second the descriptors
48 3.6835 0.9110 74.70 0.7390 5.803 7.35

appearing in the MLR model have been chosen 49 3.6977 0.9294 66.45 0.6908 5.675 5.20
50 3.6962 0.9303 61.45 0.7570 5.675 5.20adequately.
51 0.8054 0.8441 60.99 0.7251 4.656 5.63

However, the network is a 6-5-1 ANN which has 52 3.6967 0.9091 86.76 0.7171 5.887 9.07
53 0.8012 0.8751 62.54 0.7275 4.048 5.6341 adjustable parameters. On the other hand the

a The definitions of the descriptors are given in Table 3.training set consists of 41 compounds. This could
b The numbers refer to the numbers of the molecules given inlead the results due to chance. In order to show that

Table 1.
the results are not due to chance different prediction
and training sets were chosen and the network was
trained using these training sets. A set of 12 com- repeated for three times. The results obtined are
pounds out of 53 molecules was chosen randomly as included in Table 6 for three test models. As can be
a prediction set each time and this procedure was seen from this table, the resuls do not depend on the
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Table 5 Table 7
aArchitecture of the ANN and specifications Statistical parameters obtained using the ANN and MLR models

Number of nodes in the input layer 6 Model SEC (%) SEP (%) R R F Ft p t p

Number of nodes in the hidden layer 5
ANN 28.50 38.34 0.97 0.94 664 68

Number of nodes in output layer 1
MLR 62.98 74.98 0.88 0.71 20 10

Weights learning rate 0.7
aBiases learning rate 0.5 t refers to the training set; p, the prediction set; R the

Momentum 0.5 correlation coefficient; and F is the statistical F-value.
Transfer function Sigmodal

maximum relative error for I in the prediction set
was 23.48% for lavandunyl acetate and the mini-
mum value was 10.05% for nerylisobutyrate. The
mean of the relative errors between the calculated

´and the experimental values of the Kovats retention
indices for the prediction set was 1.88%. However, it
worth noting that the relative error in the experimen-
tal determination of I is in the same range.

Fig. 2 shows the plot of the ANN calculated
versus the experimental I values of the prediction set.
The correlation coefficient of 0.94 for this plot
confirms the ability of the ANN model in prediction
I for noncyclic and monocyclic terpenes. The re-
siduals of the ANN calculated I values are plottedFig. 1. A typical learning curve.
against the experimental values in Fig. 3. The
propagation of the residuals in both sides of zeromolecules of the prediction set and therefore, are not
indicates that no systematic error exists in thedue to chance.
development of the ANN.For the evaluation of the prediction power of the

The results of this study demonstrate that thenetwork, the trained ANN was used to predict the
QSPR method using the ANN techniques can gener-´Kovats retention indices of the molecules included in
ate a suitable model for the prediction of the I valuesthe prediction set. Table 1 represents the experimen-
of the terpenes. The descriptors appearing in thetal and predicted values of terpenes’ retention indices
MLR model and included in the ANN give in-using the generated ANN for the training and the

prediction sets. The statistical parameters obtained
by the ANN and MLR models are shown in Table 7.
It can be seen from this Table that although the
parameters appearing in the MLR model are used as
inputs for the ANN, the statistics of the latter show a
large improvement. In the case of the ANN, the

Table 6
Comparison of the SEC and SEP of the selected model with the
test models obtained using different molecules

Model SEC (%) SEP (%)

Selected model 28.50 38.34
Test model I 26.75 38.04
Test model II 28.11 37.11

Fig. 2. Plot of the calculated retention indices against the ex-
Test model III 28.66 43.20

perimental values.
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